36 research outputs found

    CDNF Protein Therapy in Parkinson’s Disease

    Get PDF
    Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and differentiation of neurons. Due to their neuroprotective and neurorestorative properties, their therapeutic potential has been tested in various neurodegenerative diseases. Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based therapies. Various intracerebral delivery approaches, both protein and gene transfer-based, have been tested with varying outcomes. Three growth factors, glial cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth factor (PDGF-BB) have been tested in clinical trials in Parkinson?s Disease (PD) during the past 20 years. A new protein can now be added to this list, as cerebral dopamine neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading names, CDNF, together with its closest relative mesencephalic astrocyte-derived neurotrophic factor (MANF), form a novel family of unconventional NTF that are both structurally and mechanistically distinct from other growth factors. CDNF and MANF are localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of chronic degenerative diseases, and is an important target for therapeutic modulation. Intraputamenally administered recombinant human CDNF has shown robust neurorestorative effects in a number of small and large animal models of PD, and had a good safety profile in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions of CDNF are currently being tested in a randomized placebo-controlled phase I?II clinical study in moderately advanced PD patients. Here, we review the history of growth factor-based clinical trials in PD, and discuss how CDNF differs from the previously tested growth factors.Peer reviewe

    Genome-Wide Association Analysis Identifies a Mutation in the Thiamine Transporter 2 (SLC19A3) Gene Associated with Alaskan Husky Encephalopathy

    Get PDF
    Alaskan Husky Encephalopathy (AHE) has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS). We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 – 43.36–43.38 Mb and SLC19A3.1 – 43.411–43.419 Mb) on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A). All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.University of California, Davis. School of Veterinary Medicine. Center for Companion Animal Healt

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Consensus recommendation for mouse models of ocular hypertension to study aqueous humor outflow and its mechanisms

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus

    No full text
    BACKGROUND & AIMS: Endoscopic tri-modal imaging (ETMI) incorporates high-resolution endoscopy (HRE), autofluorescence imaging (AFI), and narrow band imaging (NBI). A recent uncontrolled study found that ETMI improved the detection of high-grade dysplasia (HGD) and early carcinoma (Ca) in Barrett's esophagus (BE). The aim was to compare ETMI with standard video endoscopy (SVE) for the detection of HGD/Ca with the use of a randomized cross-over design. METHODS: Patients referred for work-up of inconspicuous HGD/Ca were eligible and underwent both SVE and ETMI in randomized order within an interval of 6-12 weeks. During ETMI, inspection with HRE was followed by AFI. Detected lesions were inspected in detail with NBI and biopsied, followed by random biopsies. During SVE, any visible lesion was biopsied followed by random biopsies. RESULTS: Eighty-seven patients with BE underwent ETMI and SVE. No significant difference was observed in overall histologic yield between ETMI and SVE. ETMI had a significantly higher targeted yield compared with SVE because of AFI. However, the yield of targeted biopsies of ETMI was significantly inferior to the overall yield of SVE. Detailed inspection with NBI reduced the false-positive rate of HRE + AFI from 71% to 48% but misclassified 17% of HGD/Ca lesions as not suspicious. CONCLUSIONS: ETMI statistically significant improves the targeted detection of HGD/Ca compared with SVE. Subsequent characterization of lesions with NBI appears to be of limited value. At this stage, ETMI cannot replace random biopsies for detection of lesions or targeted biopsies for characterization of lesions in a high-risk populatio
    corecore